## Scilab Textbook Companion For Modern Power System Analysis-Free PDF

• Date:19 Dec 2019
• Views:138
• Pages:184
• Size:2.19 MB

Share Pdf : Scilab Textbook Companion For Modern Power System Analysis

Download and Preview : Scilab Textbook Companion For Modern Power System Analysis

Report CopyRight/DMCA Form For : Scilab Textbook Companion For Modern Power System Analysis

Transcription:

Book Description,Title Modern Power System Analysis. Author D P Kothari And I J Nagrath,Publisher Tata McGraw Hill Education New Delhi. ISBN 0070494894, Scilab numbering policy used in this document and the relation to the. above book,Exa Example Solved example, Eqn Equation Particular equation of the above book. AP Appendix to Example Scilab Code that is an Appednix to a particular. Example of the above book, For example Exa 3 51 means solved example 3 51 of this book Sec 2 3 means.
a scilab code whose theory is explained in Section 2 3 of the book. List of Scilab Codes 4,1 Introduction 6, 2 Inductance and Resistance of Transmission Lines 12. 3 Capacitance of Transmission Lines 20,4 Representation of Power System Components 24. 5 Characteristics and Performance of Power Transmission Lines 31. 6 Load Flow Studies 48,7 Optimal System Operation 69. 8 Automatic Generation and Voltage Control 85,9 Symmetrical Fault Analysis 87. 10 Symmetrical Components 107,11 Unsymmetrical Fault Analysis 114.
12 Power System Stability 134,13 Power System Security 167. 14 An Introduction to State Estimation of Power Systems 176. 17 Voltage Stability 179,List of Scilab Codes,Exa 1 1 Example 1 6. Exa 1 3 Example 3 8,Exa 1 4 Example 4 9,Exa 1 5 Example 5 10. Exa 2 1 self GMD Calculation 12,Exa 2 2 Reactance Of ACSR conductors 13. Exa 2 3 Inductance Of Composite Conductor Lines 14. Exa 2 5 VoltageDrop and FluxLinkage Calculations 15. Exa 2 6 Mutual Inductance Calculation 17,Exa 2 7 Bundled Conductor Three Phase Line 17.
Exa 3 1 Capacitance of a single phase line 20,Exa 3 2 Charging current of a threephase line 21. Exa 3 3 Double circuit three phase transmission line 22. Exa 4 1 Per Unit Reactance Diagram 24,Exa 4 2 Per Unit Calculation 25. Exa 4 3 Excitation EMF and Reactive Power Calculation 27. Exa 4 4 Power Factor And Load Angle Calculation 28. Exa 5 1 SendingEnd voltage and voltage regulation 31. Exa 5 2 Voltage at the power station end 32,Exa 5 3 Problem with mixed end condition 34. Exa 5 4 Medium Transmission line system 35, Exa 5 5 Maximum permissible length and and Frequency 36. Exa 5 6 Incident and Reflected voltages 37, Exa 5 7 Tabulate characteristics using different methods 38.
Exa 5 8 Torque angle and Station powerfactor 41, Exa 5 9 Power Voltage and Compensating equipment rating 43. Exa 5 10 MVA rating of the shunt reactor 44, Exa 5 11 SendingEnd voltage and maximum power delivered 47. Exa 6 1 Ybus using singular transformation 48,Exa 6 2 Ybus of a sample system 49. Exa 6 3 Approximate load flow solution 50,Exa 6 4 Bus voltages using GS iterations 53. Exa 6 5 Reactive power injected using GS iterations 54. Exa 6 6 Load flow solution using the NR method 57, Exa 6 7 Ybus after including regulating transformer 62.
Exa 6 8 Decoupled NR method and FDLF method 64,Exa 7 1 Incremental cost and load sharing 69. Exa 7 2 Savings by optimal scheduling 72,Exa 7 3 Economical operation 74. Exa 7 4 Generation and losses incurred 75,Exa 7 5 Savings on coordination of losses 77. Exa 7 6 Loss formula coefficients calculation 80, Exa 7 7 Optimal generation schedule for hydrothermal system 81. Exa 8 1 Frequency change Calculation 85,Exa 8 2 Load sharing and System Frequency 86.
Exa 9 1 Fault Current Calculation 87, Exa 9 2 Subtransient and Momentary current Calculation 89. Exa 9 3 Subtransient Current Calculation 93,Exa 9 4 Maximum MVA Calculation 94. Exa 9 5 Short Circuit Solution 97,Exa 9 6 Short Circuit Solution using Algorithm 99. Exa 9 7 Current Injection Method 102,Exa 9 8 Zbus matrix building using Algorithm 103. Exa 9 9 PostFault Currents and Voltages Calculation 105. Exa 10 1 Symmetrical components of line currents Calculation 107. Exa 10 2 Sequence Network of the System 110,Exa 10 3 Zero sequence Network 111.
Exa 10 4 Zero Sequence Network 112,Exa 11 1 LG and 3Phase faults Comparision 114. Exa 11 2 Grounding Resistor voltage and Fault Current 115. Exa 11 3 Fault and subtransient currents of the system 117. Exa 11 4 LL Fault Current 121,Exa 11 5 Double line to ground Fault 123. Exa 11 6 Bus Voltages and Currents Calculations 127. Exa 11 7 Short Circuit Current Calculations 130, Exa 12 1 Calculation of stored kinetic energy and rotor accelera. Exa 12 2 steady state power limit 135,Exa 12 3 Maximum Power Transferred 137. Exa 12 4 Acceleration and Rotor angle 139,Exa 12 5 Frequency Of Natural Oscilations 140.
Exa 12 6 Steady State Power Limit 2 141,Exa 12 7 Critcal Clearing Angle 142. Exa 12 8 Critcal Clearing Angle 2 144,Exa 12 9 Critcal Clearing Angle 3 147. Exa 12 10 Swing Curves For Sustained Fault and Cleared Fault at. the Specified Time 148,Exa 12 11 Swing Curves For Multimachines 154. Exa 12 12 Swing Curves For Three Pole and Single Pole Switching 161. Exa 13 1 Generation Shift Factors and Line Outage Distribution. Factors 167,Exa 14 1 Estimation of random variables 176. Exa 14 2 Estimation of random variables using WLSE 177. Exa 14 3 Estimation of random variables using WLSE 2 178. Exa 17 1 Reactive power sensitivity 179,Exa 17 2 Capacity of static VAR compensator 179.
List of Figures,5 1 MVA rating of the shunt reactor 46. 7 1 Incremental cost and load sharing 73,9 1 Fault Current Calculation 90. 9 2 Subtransient and Momentary current Calculation 92. 9 3 Subtransient Current Calculation 95,9 4 Maximum MVA Calculation 97. 9 5 Short Circuit Solution 99,9 6 Current Injection Method 103. 11 1 LG and 3Phase faults Comparision 116, 11 2 Grounding Resistor voltage and Fault Current 118.
11 3 Fault and subtransient currents of the system 122. 11 4 LL Fault Current 124,11 5 Double line to ground Fault 126. 12 1 Maximum Power Transferred 139,12 2 Critcal Clearing Angle 145. 12 3 Critcal Clearing Angle 2 147, 12 4 Swing Curves For Sustained Fault and Cleared Fault at the. Specified Time 155,12 5 Swing Curves For Multimachines 162. 12 6 Swing Curves For Three Pole and Single Pole Switching 166. Introduction,Scilab code Exa 1 1 Example 1,1 C h a p t e r 1.
2 Example 1 1,3 p a g e 5,4 clear clc,5 fl 760 e3,7 lsg 0 05. 9 depre 0 12,13 pkwhr 0 10,15 md fl pf,16 printf Maximum Demand 1 f kVA n n md 1000. 18 c a l c u l a t i o n f o r t a r i f f b, 20 printf L o s s i n s w i t c h g e a r 2 f n n lsg 100. 21 input demand md 1 lsg,22 input demand input demand 1000. 23 cost sw ge input demand 60,24 depreciation depre cost sw ge.
25 fixed charges hv input demand, 26 running cost input demand pf hpw 52 pkwhr 52 w e e k s. 27 total b depreciation fixed charges running cost. 28 printf I n p u t Demand 1 f kVA n n input demand. 29 printf C o s t o f s w i t c h g e a r Rs d n n cost sw ge. 30 printf Annual c h a r g e s on d e p r e c i a t i o n Rs d n n. depreciation, 31 printf Annual f i x e d c h a r g e s due t o maximum demand. c o r r e s p o n d i n g t o t r i f f b Rs d n n. fixed charges, 32 printf Annual r u n n i n g c o s t due t o kWh consumed Rs. d n n running cost, 33 printf T o t a l c h a r g e s annum f o r t a r i f f b Rs d n. 35 c a l c u l a t i o n f o r t a r i f f a,36 input demand md.
37 input demand input demand 1000,38 fixed charges lv input demand. 39 running cost input demand pf hpw 52 pkwhr,40 total a fixed charges running cost. 41 printf maximum demand c o r r e s p o n d i n g t o t a r i f f a. f kVA n n input demand,42 printf Annual f i x e d c h a r g e s Rs d n n. fixed charges, 43 printf Annual r u n n i n g c h a r g e s f o r kWh consumed Rs. d n n running cost, 44 printf T o t a l c h a r g e s annum f o r t a r i f f a Rs d n.
45 if total a total b, 46 printf T h e r e f o r e t a r i f f b i s e c o n o m i c a l n n n. 48 printf T h e r e f o r e t a r i f f a i s e c o n o m i c a l n n n. Scilab code Exa 1 3 Example 3,1 C h a p t e r 1,2 Example 1 3. 3 p a g e 7,4 clear clc,8 puf 0 72,10 avg demand lf md. 11 installed capacity avg demand pcf,12 reserve installed capacity md. 13 daily ener avg demand 24,14 ener inst capa installed capacity 24.
15 max energy daily ener puf, 17 printf A v e r a g e Demand 2 f MW n n avg demand. 18 printf I n s t a l l e d c a p a c i t y 2 f MW n n. installed capacity, 19 printf R e s e r v e c a p a c i t y o f t h e p l a n t 2 f MW n n. 20 printf D a i l y e n e r g y p r o d u c e d d MWh n n. daily ener, 21 printf Energy c o r r e s p o n d i n g t o i n s t a l l e d c a p a c i t y. p e r day d MWh n n ener inst capa, 22 printf Maximum e n e r g y t h a t c o u l d be p r o d u c e d d. MWh day n n max energy,Scilab code Exa 1 4 Example 4.
1 C h a p t e r 1,2 Example 1 2,3 p a g e 6,4 clear clc. 5 md 20 e3,6 unit 1 14 e3,7 unit 2 10 e3,8 ener 1 1 e8. 9 ener 2 7 5 e6,10 unit1 time 1,11 unit2 time 0 45. 13 annual lf unit1 ener 1 unit 1 24 365,14 md unit 2 md unit 1. 15 annual lf unit2 ener 2 md unit 2 24 365,16 lf unit 2 ener 2 md unit 2 unit2 time 24 365.
17 unit1 cf annual lf unit1,18 unit1 puf unit1 cf,19 unit2 cf ener 2 unit 2 24 365. 20 unit2 puf unit2 cf unit2 time,21 annual lf ener 1 ener 2 md 24 365. 24 printf Annual l o a d f a c t o r f o r U n i t 1 2 f n n. annual lf unit1 100, 25 printf The maximum demand on U n i t 2 i s d MW n n. md unit 2 1000, 26 printf Annual l o a d f a c t o r f o r U n i t 2 2 f n n. annual lf unit2 100, 27 printf Load f a c t o r o f U n i t 2 f o r t h e t i m e i t t a k e s.
t h e l o a d 2 f n n lf unit 2 100, 28 printf P l a n t c a p a c i t y f a c t o r o f u n i t 1 2 f n. n unit1 cf 100, 29 printf P l a n t u s e f a c t o r o f u n i t 1 2 f n n. unit1 puf 100, 30 printf Annual p l a n t c a p a c i t y f a c t o r o f u n i t 2 2. f n n unit2 cf 100, 31 printf P l a n t u s e f a c t o r o f u n i t 2 2 f n n. unit2 puf 100, 32 printf The a n n u a l l o a d f a c t o r o f t h e t o t a l p l a n t.
2 f n n annual lf 100,Scilab code Exa 1 5 Example 5. 1 C h a p t e r 1,2 Example 1 2,3 p a g e 6,4 clear clc. 6 c1 md 6pm 5 c1 d 7pm 3 c1 lf 0 2,7 c2 md 11am 5 c2 d 7pm 2 c2 avg load 1 2. 8 c3 md 7pm 3 c3 avg load 1,10 md system c1 d 7pm c2 d 7pm c3 md 7pm. 11 sum mds c1 md 6pm c2 md 11am c3 md 7pm,12 df sum mds md system.
14 printf Maximum demand o f t h e s y s t e m i s d kW a t 7 p. m n md system, 15 printf Sum o f t h e i n d i v i d u a l maximum demands d. kW n sum mds, 16 printf D i v e r s i t y f a c t o r 3 f n n df. 18 c1 avg load c1 md 6pm c1 lf,19 c2 lf c2 avg load c2 md 11am. 20 c3 lf c3 avg load c3 md 7pm,22 printf Consumer1 t A v g l o a d 2 f kW t LF 1. f n c1 avg load c1 lf 100,23 printf Consumer2 t A v g l o a d 2 f kW t LF 1.
f n c2 avg load c2 lf 100,24 printf Consumer3 t A v g l o a d 2 f kW t LF 1. f n n c3 avg load c3 lf 100,26 avg load c1 avg load c2 avg load c3 avg load. 27 lf avg load md system, 29 printf Combined a v e r a g e l o a d 1 f kW n avg load. 30 printf Combined l o a d f a c t o r 1 f n n lf 100. Scilab Textbook Companion for Modern Power System Analysis by D P Kothari And I J Nagrath1 Created by Brahmesh Jain S D B E Electrical Engineering Sri Jayachamarajendra College Of Engineering College Teacher Prof R S Anandamurthy Cross Checked by TechPassion May 19 2016 1Funded by a grant from the National Mission on Education through ICT