HAYNES 230 alloy

Haynes 230 Alloy-Free PDF

  • Date:16 Oct 2020
  • Views:0
  • Downloads:0
  • Pages:28
  • Size:1.28 MB

Share Pdf : Haynes 230 Alloy

Download and Preview : Haynes 230 Alloy


Report CopyRight/DMCA Form For : Haynes 230 Alloy


Transcription:

Principal Features Continued,Applications, HAYNES 230 alloy combines properties which make it ideally suited for a wide variety of. component applications in the aerospace and power industries It is used for combustion. cans transition ducts flame holders thermocouple sheaths and other important gas. turbine components In the chemical process industry 230 alloy is used for catalyst. grid supports in ammonia burners high strength thermocouple protection tubes high. temperature heat exchangers ducts high temperature bellows and various other key. process internals, In the industrial heating industry applications for 230 alloy include furnace retorts chains. and fixtures burner flame shrouds recuperator internals dampers nitriding furnace. internals heat treating baskets grates trays sparger tubes thermocouple protection. tubes cyclone internals and many more,Nominal Composition. Nickel 57 Balance,Chromium 22,Tungsten 14,Molybdenum 2. Iron 3 max,Cobalt 5 max,Manganese 0 5,Silicon 0 4,Niobium 0 5 max.
Aluminum 0 3,Titanium 0 1 max,Carbon 0 1,Lanthanum 0 02. Boron 0 015 max,Haynes International HAYNES 230 alloy. Creep and Rupture Properties, HAYNES 230 alloy is a solid solution strengthened material which combines excellent. high temperature strength with good fabricability at room temperature It is particularly. effective for very long term applications at temperatures of 1200 F 650 C or more and is. capable of outlasting stainless steels and nickel alloys by as much as 100 to 1 depending. upon the temperature Alternatively the higher strength of 230 alloy allows for the use of. design section thicknesses as much as 75 percent thinner than lesser alloys with no loss in. load bearing capability, Stress Rupture Lives for Various Alloys at Fixed Test Conditions Bar and Plate. Hours to Rupture,Alloy 1400 F 760 C 1600 F 871 C 1800 F 982 C.
15 0 ksi 103 MPa 4 1 ksi 31 Mpa 2 0 ksi 14 Mpa,8 200 65 000 5 000. 625 19 000 14 000 2 400,X 900 5 000 2 100,800H 130 1 200 920. INCONEL 601,50 1 200 1 000,140 900 720,600 15 280 580. 316 SS 100 240 130,30 230 130,304 SS 10 100 72,Based upon Larson Miller extrapolation. Comparison of Stress to Produce 1 Creep in 1000 Hours Sheet. Haynes International HAYNES 230 alloy,Creep and Rupture Properties Continued.
230 Sheet Solution Annealed, Approximate Initial Stress to Produce Specified Creep in. Temperature Creep 10 Hours 100 Hours 1 000 Hours 10 000 Hours. F C ksi MPa ksi MPa ksi MPa ksi MPa,0 5 31 214,1200 649 1 35 241 24 165. R 51 352 36 248 28 193,0 5 29 200 21 145 14 5 100,1300 704 1 33 228 23 159 17 114. R 47 324 34 234 26 179 20 134,0 5 19 2 132 13 7 94 9 6 66 7 3 50. 1400 760 1 21 145 15 5 107 11 5 79 8 6 59,R 32 221 24 5 169 18 2 125 13 2 91.
0 5 14 2 98 10 3 71 7 5 52 5 4 37,1500 816 1 15 103 11 2 77 8 6 59 6 5 45. R 23 161 17 5 121 12 5 86 8 4 58,0 5 11 3 78 8 1 56 5 7 39 4 0 28. 1600 871 1 11 7 81 9 0 62 6 2 43 4 3 30,R 17 0 117 12 5 86 8 2 57 5 6 39. 0 5 7 7 53 5 5 38 3 8 26 2 4 17,1700 927 1 8 8 61 6 2 43 4 2 29 2 7 19. R 12 0 83 8 0 55 5 1 35 3 2 22,0 5 7 0 48 3 6 25 1 8 12 0 85 5 9.
1800 982 1 8 0 55 4 1 28 2 0 14 1 0 6 9,R 10 0 69 5 4 37 2 6 18 1 2 8 3. 0 5 1 7 12 0 8 5 5,1900 1038 1 2 0 14 0 9 6 2,R 3 0 21 1 5 10. 2000 1093 1 0 9 6 2,Significant Extrapolation,Haynes International HAYNES 230 alloy. Creep and Rupture Properties Continued,230 Plate Solution Annealed. Approximate Initial Stress to Produce Specified Creep in. Temperature Creep 10 Hours 100 Hours 1 000 Hours 10 000 Hours. F C ksi MPa ksi MPa ksi MPa ksi MPa,0 5 35 241 23 159.
1200 649 1 39 269 26 5 183 17 5 121,R 75 517 56 386 41 283 29 200. 0 5 35 241 21 5 148 14 5 100,1300 704 1 39 269 24 5 169 18 124 12 3 85. R 59 407 42 290 30 207 21 145,0 5 19 131 13 5 93 10 0 69. 1400 760 1 23 159 15 9 110 11 5 79 9 0 62,R 37 255 27 186 20 138 14 2 98. 0 5 14 0 97 10 4 72 8 2 57 6 1 42,1500 816 1 16 5 114 12 5 86 9 5 66 6 9 48.
R 26 179 20 138 14 0 97 9 8 68,0 5 10 3 71 7 6 52 5 6 39 4 0 28. 1600 871 1 11 7 81 9 0 62 6 2 43 4 3 30,R 20 138 13 7 94 9 5 66 6 2 43. 0 5 7 8 54 5 7 39 3 9 27 2 5 17,1700 927 1 8 8 61 6 8 47 4 5 31 2 7 19. R 15 0 103 10 0 69 6 0 41 3 6 25,0 5 5 8 40 3 5 24 1 8 12 0 90 6 2. 1800 982 1 6 3 43 4 0 28 2 1 14 1 1 7 6,R 9 4 65 6 0 41 3 2 22 1 7 12.
0 5 4 0 28 2 0 14 0 90 6 2,1900 1038 1 4 4 30 2 2 15 1 0 6 9 0 50 3 4. R 7 0 48 3 7 26 1 8 12 1 0 6 9,0 5 1 9 13 0 80 5 5 0 35 2 4. 2000 1093 1 2 3 16 1 0 6 9 0 47 3 2 0 20 1 4,R 4 2 29 2 1 14 1 0 6 9 0 55 3 8. 0 5 0 80 5 5 0 03 2 1,2100 1149 1 1 0 6 9 0 43 3 0. R 2 3 16 1 2 8 3 0 60 4 1,Significant Extrapolation.
Haynes International HAYNES 230 alloy,Low Cycle Fatigue. HAYNES 230 alloy exhibits excellent low cycle fatigue properties at elevated. temperature Results shown below are for strain controlled tests run in the temperature. range from 800 to 1800 F 425 to 980 C Samples were machined from plate Tests were. run with fully reversed strain R 1 at a frequency of 20 cpm 0 33 Hz. Comparative Low Cycle Fatigue Properties, The graph below compares the low cycle fatigue lives of a number of alloys tested at. 800 F 427 C in both the as received and 1400 F 760 C 1000 hour pre exposed con. dition Samples were machined from plate or bar after exposure for exposed samples. Tests were again run with fully reversed strain R 1 at a frequency of 20 cpm 0 33 Hz. TSR Total Strain Range,800 F 425 C LCF Life for Various Alloys. Compilation of axial LCF test results R 1 f 0 33 Hz. Temperature tot Ni Cycles to Initiation Nf Cycles to Failure. 800 427 1 50 2230 2398,1 00 8480 8742,0 80 14 918 16 575. 0 65 45 127 46 523,0 55 103 910 115 456,Indicates a run out.
Haynes International HAYNES 230 alloy,Low Cycle Fatigue Continued. Compilation of axial LCF test results R 1 f 0 33 Hz. Temperature tot Ni Cycles to Initiation Nf Cycles to Failure. 1000 538 1 50 1329 1540,1 25 1974 2368,1 00 3330 4413. 0 80 7864 8734,0 70 8423 9876,0 60 38 696 40 604,0 56 73 014 74 132. 0 53 200 005,0 50 201 190,1200 649 1 25 1022 1257,1 00 1852 2254. 0 80 3431 4248,0 60 8962 11 058,0 50 82 275 85 563.
0 45 200 002,0 40 200 005,1400 760 0 80 1896 2218,0 40 20 519 21 564. 0 40 43 915 45 279,0 30 203 327,1400 760 1 00 870 1097. 1 00 827 990,0 70 3166 3622,0 50 8153 8490,0 40 51 285 57 819. 0 40 68 451 75 470,0 38 95 165 96 844,0 37 91 879 97 612. 0 35 202 920,0 30 150 000,1600 871 0 70 1279 1504,0 50 3939 4299.
0 50 3176 3473,0 40 9712 10 837,0 40 9296 10 781,0 35 19 179 20 964. 0 31 61 898 63 253,0 30 65 691 66 926,0 25 200 770. 1800 982 0 60 818 1218,0 50 1506 2582,0 40 3520 4223. 0 40 3070 4784,0 30 19 810 21 311,0 30 13 904 19 200. 0 25 105 140 106 020,0 25 116 960 119 890,Haynes International HAYNES 230 alloy.
Tensile Properties,Tensile Properties of 230 Sheet. Test 0 2 Yield Ultimate Tensile,Temperature Strength Strength Elongation. F C ksi MPa ksi MPa,70 21 60 4 417 121 4 837 47 3,1000 538 42 6 294 100 1 690 51 7. 1200 649 42 2 291 96 6 666 56 9,1400 760 45 1 311 78 0 538 59 5. 1600 871 34 2 236 44 6 308 74 2,1800 982 17 8 123 24 5 169 54 1.
2000 1093 10 0 69 13 1 90 37 0,Tensile Properties of 230 Plate. Test 0 2 Yield Ultimate Tensile,Temperature Strength Strength Elongation. F C ksi MPa ksi MPa,70 21 55 5 383 123 6 852 46 0,1000 538 38 1 263 102 5 706 53 2. 1200 649 38 7 267 98 2 677 53 0,1400 760 37 7 260 77 2 533 68 0. 1600 871 33 9 234 45 1 311 94 0,1800 982 16 8 116 24 3 168 91 2.
2000 1093 9 1 63 13 2 91 92 1,RT Room Temperature,Comparison of Yield Strengths Plate. Haynes International HAYNES 230 alloy,Thermal Stability. HAYNES 230 alloy exhibits excellent retained ductility after long term thermal exposure. at intermediate temperatures It does not exhibit sigma phase mu phase or other. deleterious phase formation even after 16 000 hours of exposure at temperatures from. 1200 to 1600 F 649 to 871 C Principal phases precipitated from solid solution are all. This contrasts markedly with many other solid solution strengthened superalloys such. as HAYNES 188 alloy HAYNES 625 alloy and HASTELLOY X alloy These alloys all. precipitate deleterious phases which impair both tensile ductility and impact strength. Haynes International HAYNES 230 alloy,Thermal Stability Continued. Room Temperature Properties after Thermal Exposure. Condition 0 2 Yield Ultimate Tensile Elongation R A Impact. Strength Strength Strength,ksi ksi ft lb,MA 123 1 58 4 50 47 2 54. 1200 8 000 hr 128 0 57 9 36 4 39 31 4,1200 20 000 hr 128 4 57 6 34 8 37 28 9.
1200 30 000 hr 129 9 59 4 34 38 3,1200 50 000 hr 131 7 61 2 33 9 36 9 25 8. 1400 8 000 hr 129 7 59 2 32 34 3 18 7,1400 20 000 hr 126 9 55 31 2 31 6 18 8. 1400 30 000 hr 126 9 54 3 31 3 33 9,1400 50 000 hr 127 7 55 2 32 2 32 5 20 7. 1600 8 000 hr 122 7 54 3 36 2 34 6 21 6,1600 20 000 hr 121 6 50 1 34 4 31 1 19 5. 1600 30 000 hr 120 0 49 6 32 1 28 6,1600 50 000 hr 116 7 50 4 25 2 20 2 14 8.
BIGM AGL Elong which tends to be lower Other data are 4D Elong. R A Reduction of Area, Retained Room Temperature Tensile Ductility after 8000 Hour. Exposure at Temperature, Room Temperature Room Temperature Room Temperature Room Temperature. Exposure Tensile Elongation Tensile Elongation Tensile Elongation Tensile Elongation. Temperature 230 188 625 X,1200 36 4 29 1 18 19,1400 32 10 8 13 19. 1600 36 2 22 2 26 30,Haynes International HAYNES 230 alloy. Resistance to Grain Growth, HAYNES 230 alloy exhibits excellent resistance to grain growth at high temperatures As a.
consequence of its very stable primary carbides 230 alloy can be exposed at temperatures as. high as 2200 F 1204 C for up to 24 hours without exhibiting significant grain growth Materials. such as HAYNES 188 alloy or HASTELLOY X alloy exhibit greater grain growth under such. conditions as would most iron nickel or cobalt base alloys and stainless steels. Grain Size for Alloys Exposed at Temperature for Various Times. Exposure ASTM Grain Size No,Time 2150 F 1177 C 2200 F 1204 C. 0 4 4 1 2 4 4 1 2 4 5 4 5 3 1 2 3 1 2,1 4 5 4 4 1 2 2 5 2 4 3 1 2 0 1. 4 4 4 1 2 4 4 1 2 3 1 2 3 3 1 2 0 1,24 4 4 4 1 2 0 2 1 3 00 4 0 1 1 2. Plate Product,Haynes International HAYNES 230 alloy. Physical Properties,Physical Property British Units Metric Units.
Density RT 0 324 lb in 3,RT 8 97 g cm3,Melting Temperature 2375 2500 F 1301 1371 C. RT 49 2 ohm in RT C 125 0 ohm m,200 F 49 5 ohm in 100 C 125 8 ohm m. 400 F 49 8 ohm in 200 C 126 5 ohm m,600 F 50 2 ohm in 300 C 127 3 ohm m. 800 F 50 7 ohm in 400 C 128 4 ohm m, Electrical Resistivity 1000 F 51 5 ohm in 500 C 130 2 ohm m. 1200 F 51 6 ohm in 600 C 131 2 ohm m,1400 F 51 1 ohm in 700 C 130 7 ohm m.
1600 F 50 3 ohm in 800 C 129 1 ohm m,1800 F 49 3 ohm in 900 C 127 1 ohm m. 1000 C 125 0 ohm m,RT 3 8 x 10 3in2 sec RT 24 2 x 10 3cm2 s. 200 F 4 1 x 10 3in2 sec 100 C 26 8 x 10 3cm2 s,400 F 4 7 x 10 3in2 sec 200 C 29 9 x 10 3cm2 s. 600 F 5 2 x 10 3in2 sec 300 C 32 9 x 10 3cm2 s,800 F 5 6 x 10 3in2 sec 400 C 35 7 x 10 3cm2 s. Thermal Diffusivity 1000 F 6 1 x 10 3in2 sec 500 C 38 5 x 10 3cm2 s. 1200 F 6 5 x 10 3in2 sec 600 C 41 9 x 10 3cm2 s,1400 F 6 7 x 10 3in2 sec 700 C 43 0 x 10 3cm2 s.
1600 F 6 7 x 10 3in2 sec 800 C 43 2 x 10 3cm2 s,1800 F 7 3 x 10 3in2 sec 900 C 44 4 x 10 3cm2 s. 1000 C 48 2 x 10 3cm2 s,RT 62 Btu in ft2 hr F RT 8 9 W m C. 200 F 71 Btu in ft hr F,100 C 10 4 W m C,400 F 87 Btu in ft2 hr F 200 C 12 4 W m C. 600 F 102 Btu in ft hr F,300 C 14 4 W m C,800 F 118 Btu in ft hr F. 400 C 16 4 W m C,1000 F 133 Btu in ft2 hr F 500 C 18 4 W m C.
Conductivity,1200 F 148 Btu in ft hr F,600 C 20 4 W m C. 1400 F 164 Btu in ft hr F,700 C 22 4 W m C,1600 F 179 Btu in ft2 hr F 800 C 24 4 W m C. 1800 F 195 Btu in ft hr F,900 C 26 4 W m C,1000 C 28 4 W m C. RT Room Temperature,Haynes International HAYNES 230 alloy. Physical Properties Continued,Physical Property British Units Metric Units.
RT 0 095 Btu lb F RT 397 J kg C,200 F 0 099 Btu lb F 100 C 419 J kg C. 400 F 0 104 Btu lb F 200 C 435 J kg C,600 F 0 108 Btu lb F 300 C 448 J kg C. 800 F 0 112 Btu lb F 400 C 465 J kg C, Specific Heat 1000 F 0 112 Btu lb F 500 C 473 J kg C. 1200 F 0 134 Btu lb F 600 C 486 J kg C,1400 F 0 140 Btu lb F 700 C 574 J kg C. 1600 F 0 145 Btu lb F 800 C 5595 J kg C,1800 F 0 147 Btu lb F 900 C 609 J kg C.
1000 C 617 J kg C,70 200 F 6 5 in in F 25 100 C 11 8 x 10 6m m C. 70 400 F 6 9 in in F 25 200 C 12 4 x 10 6m m C,70 600 F 7 2 in in F 25 300 C 12 8 x 10 6m m C. 70 800 F 7 4 in in F 25 400 C 13 2 x 10 6m m C, Mean Coefficient of 70 1000 F 7 6 in in F 25 500 C 13 6 x 10 6m m C. Thermal Expansion 70 1200 F 8 0 in in F 25 600 C 14 1 x 10 6m m C. 70 1400 F 8 3 in in F 25 700 C 14 7 x 10 6m m C,70 1600 F 8 6 in in F 25 800 C 15 2 x 10 6m m C. 70 1800 F 8 9 in in F 25 900 C 15 7 x 10 6m m C,25 1000 C 16 1 x 10 6m m C.
RT 30 3 x 106 psi RT 209 GPa,200 F 30 1 x 106 psi 100 C 207 GPa. 400 F 29 0 x 106 psi 200 C 200 GPa,600 F 27 8 x 106 psi 300 C 193 GPa. Stress Rupture Lives for Various Alloys at Fixed Test Conditions Bar and Plate Based upon Larson Miller extrapolation Comparison of Stress to Produce 1 Creep in 1000 Hours Sheet Alloy Hours to Rupture 1400 F 760 C 1600 F 871 C 1800 F 982 C 15 0 ksi 103 MPa 4 1 ksi 31 Mpa 2 0 ksi 14 Mpa 230 8 200 65 000 5 000 625 19 000 14 000 2 400 X 900 5 000 2 100 800H 130 1 200

Related Books